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This paper presents a fast optimization algorithm for power
amplifiers in radar transmitters based upon a metric designed to
assess spectral mask compliance. The search finds the load
impedance maximizing the power-added efficiency (PAE) while
providing compliance with the assigned spectral mask. Measurement
results illustrate consistency in the chosen optimum values of
efficiency, while spectral mask requirements are consistently met at
the optimum load impedances chosen by the search. This algorithm
will allow adaptive radar transmitter amplifiers to quickly adjust
their load impedances to change frequency bands of operation,
change spectral output properties based on nearby spectrum users,
and meet dynamically varying spectral mask requirements.
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I. INTRODUCTION

The recent rise in demand for wireless broadband
communication devices has brought increasing concern to
radar operators. The growth in wireless broadband
applications and users indicates that future radars will
have to operate more flexibly and use less spectrum. Many
believe that dynamic spectrum access (DSA), a protocol
wherein spectrum is assigned in real time, will be the
sharing protocol of the future and that future spectrum
users will need to be flexible in transmission frequency,
power, and bandwidth to meet ever-changing spectral
environments. For radar operators, one potentially useful
idea is cognitive radar, thoroughly discussed by Haykin
[1] and Guerci [2]. A cognitive radar senses and adapts to
its environment and to regulations. A significant challenge
in building an adaptive radar is the creation of adaptable
transmitter circuitry and corresponding algorithms that
can adjust the characteristics of the circuitry for operation
at different operating frequencies, as well as adjust to
changing spectral mask requirements. In the future, it is
possible that spectral mask requirements for the radar may
change in different regions, and may be based on the
number of active spectrum users in a geographical area.
The circuitry must be able to reconfigure quickly to
minimize the radar “down time” for adjustment.

A phased-array radar transmitter normally consists of
multiple amplifiers connected to antennas. The
development of microwave microelectrical mechanical
system (MEMS) technology for tunable circuits, as
demonstrated by Qiao et al. in [19], is a potential way that
tunable passive matching networks could be constructed in
future radar transmitters. The tunable MEMS circuitry
would be placed following each amplifier’s active device
as its output matching network, allowing load impedances
around the Smith chart to be accomplished and changed
“on the fly” during radar operation. We present algorithms
and bench-top measurement results to serve as a starting
point for real-time tuning of amplifier circuitry for
changing optimization objectives, as in a DSA or dynamic
spectral mask environment. Parallel development in
microwave MEMS technologies and reconfigurable
circuitry are expected to support the implementation of
tunable circuitry in future radar systems.

In this paper, we present an algorithm to optimize the
transmitter’s output based directly on the spectral mask.
Radar transmitter output signals are required to be within
the confines of a spectral mask, determined according to
the standards of the International Telecommunication
Union (ITU) and, in the United States, the National
Telecommunications and Information Administration
(NTIA) and Federal Communications Commission (FCC).
ITU standard ITU-R SM.329 discusses allowable spectral
emissions in the spurious emission domain [3], and
standard ITU-R SM.1541 discusses allowable spectral
emissions in the out-of-band domain, which is closer to
the assigned bandwidth than the spurious domain [4]. The
ITU Radio Regulations provide information regarding the
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spectral limitation requirements of transmitted radio
signals [5]. In the United States, the Radar Spectrum
Engineering Criteria (RSEC) specifically describes the
guidelines for radar spectrum emissions [6].

In a previous paper, we presented and demonstrated a
vector-based algorithm to optimize the load impedance of
an amplifier for the power-added efficiency (PAE), while
meeting a desired level of adjacent-channel power ratio
(ACPR) [7]. The load impedance optimization approach is
demonstrated using laboratory measurements with a
microwave load-pull system. While the use of ACPR in
these load-pull measurements provides useful information
regarding nonlinearity-induced leakage of the main-band
signal into the adjacent channel, the ACPR metric does not
provide sufficient information to determine overall
spectral mask compliance. Therefore, an improved metric
is needed to numerically describe the quality of spectral
mask compliance as set forth by the RSEC or other
governing document. We define a metric to describe
spectral mask compliance and demonstrate its successful
use in the optimization. The significance of this paper’s
contribution is the creation of a metric for spectral mask
compliance that is useful in load-impedance optimization,
and the demonstration of successful PAE optimization
under spectral mask constraints. Our previous work in [7]
uses the ACPR, which is the total power in the adjacent
band; the ACPR metric is not directly useful as a metric of
spectral compliance in the out-of-band domain due to the
typical slope of the spectral mask in this region. Rather,
the ACPR is a measure of the total power in a defined
adjacent band, with no reference to the
power-versus-frequency profile in this band. As such, the
approach of [7] is somewhat disadvantaged, as regulatory
checks with a spectral mask still must be performed
following the optimization. With the metric we present in
this paper, the optimization can successfully be performed
while confirming that the final result of the optimization
meets the spectral requirements as outlined by the ITU or
other governing body.

This paper involves Pareto optimization, an
optimization involving a tradeoff between two objectives
that depend on the same variables [8–13]. To our
knowledge, this paper is the first demonstration of
load-impedance tuning for spectral mask compliance,
although initial load-pull tuning for ACPR is
demonstrated by Sevic [14, 15], and our previous work
demonstrates the Pareto optimization of PAE under ACPR
constraint [7]. The work of Wu shows that
amplifier-related spectral spreading is caused by third- and
fifth-order intermodulation distortion [16]. Several recent
papers demonstrate other innovations in intelligent
impedance tuning for antenna and amplifier matching
applications [17–24].

II. A METRIC FOR SPECTRAL MASK COMPLIANCE

A metric for spectral mask compliance is useful in
performing the joint optimization. It is important that this

metric clearly demonstrate when the waveform is within
the spectral compliance boundaries and when it is outside
the boundaries. Optimization requires a numerical metric
that can either be maximized, minimized, or propelled
toward a target value through the search.

Davidson et al. have proposed a method to perform
optimization to spectral mask constraints by the use of
linear matrix inequalities, and they also discuss convex
optimization as it applies to spectral mask criteria,
providing example applications in filter and beamformer
design [25]. Parr demonstrates an algorithm to
numerically generate short time-duration pulses that meet
FCC spectral mask constraints for ultrawideband systems
[26]. In Parr’s method, eigenvalues of a matrix equation
representing transmission describe the percentage of the
related eigenvector’s power that is inside the spectral mask
constraints. Larger eigenvalues indicate a larger
percentage of the waveform’s power that abides within the
spectral mask. The paper gives an example of
ultrawideband waveform design to fit an FCC spectral
mask between 3.1 GHz and 10 GHz [26]. Sheng
demonstrates adjustment of waveform parameters to meet
spectral mask requirements based on measurement results
[27]. Luo provides a pulse-shaping technique for
optimizing a waveform for transmission within a spectral
mask [28]. Our metric is different in that it is a
measurement-based optimization that involves the
amplifier matching network. To our knowledge, the
present paper is the first to present a real-time amplifier
circuit optimization algorithm based on spectral mask
compliance.

The metric Sm we propose for capturing the spectral
compliance numerically is defined as follows:

Sm = max (s − m) (1)

where s is the power, in dBm, that is output from the radar
amplifier and m is the value (also in dBm) of the spectral
mask. The values of s and m are compared at all
frequencies of interest, and the maximum value of s – m
(over all frequencies considered) is used for the
optimization. If the output spectrum of the transmitter is
compliant with the spectral mask, then s – m is less than or
equal to zero. A positive value of Sm indicates that the
spectrum is not compliant with the mask. If Sm is zero,
then the spectrum is marginally compliant, and if Sm is
negative, the spectrum is compliant with “room to spare.”

Because linearity and efficiency are conflicting
objectives for a power amplifier [29], changing the load
impedance to increase the power efficiency is expected to
result in a decrease in the linearity, and hence an
undesirable increase in Sm. Thus, in a typical Pareto
optimization for radar transmission, it is expected that the
optimum efficiency under the spectral mask constraints
will occur when the spectrum approaches marginal
compliance with the spectral mask, at Sm slightly less than
zero. To summarize, the two criteria for the Pareto
optimization are 1) minimization of the spectral mask
metric Sm, and 2) maximization of the PAE. The solution
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Fig. 1. Typical contour plots for PAE and ACPR. Optimal values of
PAE and ACPR are indicated and contours emanate outward from

optimum for both. Pareto front is a curve consisting of Pareto optimal
solutions between the two optima.

that is chosen from the Pareto front for these two criteria is
the solution that results in Sm just below or equal to zero.

III. DESCRIPTION OF THE SEARCH

Fig. 1 shows typical simulated contour plots for the
PAE and ACPR. Because the ACPR expresses the power
in a defined adjacent channel, the load-impedance
dependence of Sm, while not exactly identical, is expected
to possess many characteristics similar to the ACPR
contours. The concept of Pareto optimization is visible
from Fig. 1, as the Pareto optimal solutions lie along a
“Pareto front” curve in the Smith chart that contains the
optimum PAE values for different limiting values of
ACPR. The Pareto front containing the optimum PAE
values for different limiting values of Sm is expected to be
similar, albeit perhaps distinct. There are two distinct
differences (both significant improvements for the
optimization) between the optimization for Sm and our
previous optimization for ACPR demonstrated in [7].

1) The optimization for Sm is based on the entire
spectrum under consideration, not merely total power in a
defined adjacent channel. Because the shape of the mask is
taken into consideration in the optimization for Sm, the
results are expected to be different.

2) While optimization for ACPR using a defined
adjacent channel may provide better results in the defined
channel but less optimum results in other areas of the
spectrum, the Sm optimization will “discover” additional
areas of the spectrum that may rise while some channels
are decreased. This is important in future joint
optimization, where the bandwidth of the input chirp
waveform may be varied, causing the third- and fifth-order
intermodulation products to appear at different
frequencies. In the case of ACPR, this may simply “push”
them out of the defined adjacent channel, improving the
value of ACPR, but the use of Sm in the optimization will

Fig. 2. Graphical description of step vectors in determination of new
candidate point for cases (a) when value of Sm is greater than zero (out of
compliance with spectral mask) and (b) when value of Sm is less than or

equal to zero (in compliance with spectral mask). m̂ is unit vector in
direction of Sm steepest descent (opposite to Sm gradient), p̂ is unit

vector in direction of PAE steepest ascent (direction of PAE gradient),
and b̂ is unit vector in direction of bisector of m̂ and p̂. Next candidate

point is chosen by adding m̂Dm + b̂Db to current candidate in case
(a) and by adding p̂Dm + b̂Db to current candidate in case (b).

detect these violations of the mask regardless of their
frequencies.

The optimization problem at hand is to find the value
of load reflection coefficient ΓL providing the maximum
value of PAE while obtaining Sm ≤ 0. A search is
designed that proceeds in a similar manner to the search in
[7], using the gradients of PAE and Sm to guide the search.
Fig. 2 provides a graphical illustration of choosing the
next candidate point during the search. To construct the
vector to the next candidate point, the gradients of PAE
and Sm are estimated, and unit vectors p̂ and m̂ are
established in the direction of these gradients, respectively.
From the theory of convex Pareto optimization, at all
points on the Pareto front, p̂ and m̂ are collinear and
oppositely directed [30, 31]. As such, the unit vector b̂

bisecting p̂ and m̂ is directed toward the linear estimate of
the closest point on the Pareto front to the present
candidate. The vector to the next candidate is composed of
a component toward either the PAE or Sm optimum, and a
component toward the closest point on the Pareto front (in
the direction of b̂). Ideally, this will guide the search
toward the point with maximum PAE at Sm = 0. If
measurements of PAE and Sm are performed at the present
candidate and Sm > 0, the present value of ΓL does not
provide a spectrum in compliance with the spectral mask,
and the search vector to find the next candidate point from
the present Smith chart location is given by

v̄ = m̂Dm + b̂Db (2)

where m̂ is the unit vector in the direction opposite to the
Sm gradient and b̂ is the unit vector in the direction of the
bisector between m̂ and p̂, the unit vector in the direction
of the PAE gradient. If, however, the measurement gives
Sm ≤ 0, the current candidate ΓL produces a spectrum that
meets compliance requirements, and the vector to the next
candidate point from the present Smith chart location is
given by

v̄ = p̂Dm + b̂Db (3)

In this case, the unit vector p̂ in the direction of the PAE
gradient is used, as it is desired to increase PAE and move
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Fig. 3. Measurements to extract gradients for PAE and Sm.

toward the compliance Sm = 0 boundary. The vector
component magnitudes in (2) and (3) are calculated as
follows:

Dm = Ds

2

|Sm,meas |
∣
∣Sm,worst

∣
∣

(4)

Db = Ds

2

|θmeas − θtarget |
θtarget

(5)

In (4), Sm,meas is the value of Sm at the present candidate,
and Sm,worst is the largest magnitude of Sm over all the
measured points since the start of the algorithm. In (5), θ

is the angle between b̂ and m̂, or equivalently, the angle
between b̂ and p̂. θmeas is the measured value of θ at the
present candidate, and θ target is the desired value of θ . Dm

and Db are the vector components, and (4) and (5)
represent efforts to gauge the remaining distance to the
Pareto optimum based on a rough measurement of what
percentage of the optimization has been performed
regarding each goal. Equation (4) represents an estimate
of the percentage of required improvement from the worst
case measured value for Sm: the goal value of Sm is zero,
and as the candidate approaches the desired value of zero,
the step size gets smaller (division by the largest
magnitude of Sm measured in the search iterations is
performed). Equation (5) gives the component size in the
direction of the bisector between the optimum PAE and Sm

directions. If the point lies exactly on the Pareto front
between the PAE and Sm optima, p̂ and m̂ will be collinear
and oppositely directed, and the value of θ will be 90◦.
Thus, (5) is an estimate of the “closeness” to the Pareto
front, and θtarget = 90◦ in (5). The value of Db will
decrease as the search nears the Pareto front. The
components (4) and (5) thus combine to drive the search
toward the desired Pareto optimum by their use in (2)
and (3).

To provide the information necessary to choose the
next candidate point, the gradients ∇p (Γr, Γi) and
∇Sm (Γr, Γi) must be calculated. For each candidate value
of ΓL, these are evaluated from measurements at
neighboring ΓL values, separated from the candidate by
neighboring point distance Dn, in a manner similar to that
described in [24]. The gradient estimation from
measurements of PAE and Sm taken at neighboring points
is shown conceptually in Fig. 3, based on a method
recommended by Wilde [32].

Once the search enters the acceptable region (Sm ≤ 0),
the search is confined to remain in this region by rejecting
any measured candidate values of ΓLthat occur with
Sm > 0. After violation of the mask in this way, the value
of search distance parameter Ds in (4) and (5) is divided

Fig. 4. Load-pull test setup.

by 3, and the search is continued. When Ds is found to be
less than the distance resolution parameter Dn, the search
is stopped, and the measured ΓL value with the highest
value of PAE and Sm ≤ 0 is selected as the optimum.

IV. MEASUREMENT RESULTS

The algorithm was evaluated using measurements
taken using an automated tuner system (ATS) from Maury
Microwave controlled by MATLAB. Measurement results
were obtained for a Skyworks 65017-70LF InGaP
packaged amplifier, with the algorithm starting at different
values of ΓL. The load-pull measurement setup in our
laboratory, used for these experiments, is displayed in
Fig. 4. The chirp waveform is supplied by a signal
generator. The load impedance shown to the device under
test is adjusted by a mechanical load tuner. A spectrum
analyzer is used to measure the output spectrum, and the
measured spectrum is compared by MATLAB to the
spectral mask for calculation of Sm. A broadband power
sensor and power meter combination is used to measure
the broadband output power and calculate the PAE based
on the dc power supplied to the device.

As a conceptual point of reference, load-pull contours
for PAE and ACPR were measured traditionally for the
65017-70LF amplifier under chirp excitation. The center
frequency of the chirp is 3.3 GHz, and the chirp
bandwidth of the input waveform is 16 MHz. The contours
are shown in Fig. 5. ACPR contours are shown instead of
Sm contours because Sm contours are not an option for
traditional measurement with the Maury ATS software.
However, it is expected that the Sm contours will possess
similar characteristics to the ACPR contours, as both
metrics are related to adjacent-channel spreading from
power amplifier nonlinearities.

For this optimization, the highest PAE value possible
while maintaining Sm ≤ 0 dBc is sought. This provides
the best value of PAE while keeping the device within
spectral compliance.

Fig. 6 shows the algorithm measurement search results
for a starting reflection coefficient ΓL = 0.9 < 0◦. A PAE
of 6.780% is achieved with 11 measurements, and the final
value of Sm is slightly less than 0 dBc, as desired. The 11
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Fig. 5. Traditionally measured PAE and ACPR load-pull contours with
PAE and ACPR optima indicated. Sm contours are expected to be similar
in shape and trajectory to ACPR contours. For this measurement, main
channel is defined from 3.295 GHz to 3.305 GHz, with lower adjacent

channel defined from 3.280 GHz to 3.290 GHz.

Fig. 6. Measurement search algorithm results from starting
ΓL = 0.9 < 0◦.

measurements required to complete the search is an
attractively small number that is comparable to the
PAE/ACPR Pareto search detailed in [7].

Figs. 7–10 show additional search algorithm results
from different starting values of ΓL. The results of these
searches are summarized in Table I. Table I shows that all
of the starting points used in the measurement algorithm
resulted in very similar PAE values. The standard
deviation of the five PAE values reported is 0.094 percent.
This provides significant insight to the reliability of the
search to obtain a high value of PAE regardless of starting
point. While the endpoints have some variation, most
notably from the starting ΓL = 0.9 < −90◦, the similarity
of the PAE values shows that this difference in Smith chart
location is inconsequential. This indicates that the PAE
does not vary significantly over the region of the
endpoints: the characteristic surface over the Smith chart
representing the PAE is reasonably flat in the region
containing the search endpoints. All five endpoints also
show values of Sm less than zero, indicating spectral mask
compliance. In addition, all searches end close to the
spectral mask, with Sm > −0.5 dBc for all endpoints. This

Fig. 7. Measurement search algorithm results from starting
ΓL = 0.9 < 90◦.

Fig. 8. Measurement search algorithm results from starting
ΓL = 0.9 < 180◦.

Fig. 9. Measurement search algorithm results from starting
ΓL = 0.9 < −90◦.

indicates that the final Pareto solution of all searches was
obtained close to the spectral mask boundary, as expected.
The variation of the measurement results in this case
appears to be due to measurement noise and the small
sensitivity of the PAE characteristic to changes in ΓL

(rather than, for example, to undesirable multimodal PAE
and ACPR behavior).
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Fig. 10. Measurement search algorithm results from starting ΓL = 0.

TABLE I
Measurement Results for Different Starting Reflection Coefficients

End End
Start �L End �L PAE (%) Sm (dBc) # Pts.

0.9 < 0◦ 0.570 < −14.43◦ 6.780 −0.322 11
0.9 < 90◦ 0.545 < −17.05◦ 6.917 −0.089 26
0.9 < 180◦ 0.586 < −15.54◦ 6.659 −0.322 22
0.9 < −90◦ 0.548 < −36.24◦ 6.736 −0.057 19
0 0.571 < −17.44◦ 6.772 −0.487 10

Fig. 11. Spectrum analyzer measurement of signal power versus
frequency at starting point ΓL = 0.9 / −90◦ pictured with spectral mask.

Spectrum clearly violates spectral mask constraint at multiple points.

Figs. 11 and 12 show the measured power spectrum
from the spectrum analyzer for the starting and ending
values of ΓL, respectively, for the search beginning from
ΓL = 0.9 < −90◦, along with the spectral mask used in
the optimization. As in the case of typical
government-established spectral requirements, the spectral
mask is determined from the maximum in-band power of
the signal. Fig. 11 shows clear violation of the spectral
mask at multiple frequencies above and below the band at
the starting value of ΓL for the search. However, following
the optimization, it can be seen that the spectral mask
comes just into compliance, with an ending
Sm = −0.057dBc. This value indicates a very small
minimum difference between the spectrum and the mask
at the search endpoint, and it appears from Fig. 12 that this
minimum difference occurs just below 3.32 GHz, where

Fig. 12. Spectrum analyzer measurement of signal power versus
frequency at ΓL = 0.548 / − 36.24◦, the endpoint of search starting from
ΓL = 0.9 / − 90◦, pictured with spectral mask. Spectrum is compliant,

with measured power being less than or equal to spectral mask at all
frequencies shown. Final Sm value measured during search was −0.057

dBc, indicating minimum difference between spectrum and mask of only
0.057 dBc, occurring near 3.32 GHz.

the measured spectrum appears to nearly touch the mask.
The measurement data shows consistency between
spectral mask evaluation and the search results. The search
achieves a maximum constrained PAE (constrained to
meet spectral requirements) in a very small number of
measurements.

V. CONCLUSIONS

An algorithm has been presented to tune the load
impedance of a power amplifier to optimize the PAE while
achieving spectral mask compliance. Measurement testing
has provided excellent results, showing that the optimized
PAE under spectral mask compliance conditions varies
with a standard deviation of less than 0.1 percent from five
different starting values of load reflection coefficient. The
number of measurements used to obtain the optimum was
seen to vary between 11 and 26 experimental queries, a
level of fast optimization expected to be useful for the
real-time optimization of radar transmitter power
amplifiers.

The results presented in this paper are expected to be
useful in the real-time optimization of the load impedance
of future radar transmitters. These transmitters can be
designed to be spectrally sensitive, optimizing their load
impedance to achieve high power efficiency while
maintaining spectral compliance. This is expected to be
useful in allowing radar transmitters to reconfigure
accurately between different frequency bands, and in
scenarios where quick frequency adjustment is necessary.
In potential future scenarios where spectral masks are
varied due to user demand for the spectrum, this algorithm
will allow radars to adapt quickly and accurately,
maintaining maximized efficiency while meeting the
changing spectral requirements.
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